浅谈岩土钻凿工程现状及发展

http://www.huishouceo.com 2015年09月19日        

岩土钻凿工程在当前我国经济建设中已占有愈来愈重要的地位,其应用领域已不仅涉及矿产的勘探与开发,而愈来愈多地涉及建筑、供水、市政、交通、环境等方面。而随着我国经济建设的进一步改革开放和建设步伐的加快,这类工程的国际国内市场越来越大,要求也越来越高。

因此,岩土钻掘技术及工艺水平的发展对我国的各类工程建设及经济发展起着愈来愈重要的影响,空气潜孔锤钻进以其能够大幅度提高钻进效率,保证工程质量,降低施工成本,具有显著的技术经济效益而视为现代钻探技术与衡量钻探技术的标志之一,受到国内外钻探行业的重视。风动潜孔锤钻进工艺的诞生及发展是世界钻探技术的一次重大革命,它改变了传统的切削和研磨碎岩方式,使岩石成体积破碎,大大提高了钻进效率和对坚硬及复杂地层的适应性,风动潜孔锤钻进开始主要始于钻凿爆破孔,水井基岩孔,地质勘探孔,国内外研究者为了拓展其应用范围,从潜孔锤结构形式、工作性能,使其适应多种工程应用的要求。
空气潜孔钻进技术因其如下的一些特点,是它拓展应用领域的有利条件:
1、钻进效率高,生产实践证明,其钻研进效率比波动冲击回转钻进效率高了3~10倍,效率提高的原因是:单次冲击功大,排渣风速高,孔底干净,无二次破碎;由于无液柱压力,在无地下水的情况下,改善了孔底破条件。
2、潜孔锤的柱齿或球齿硬质合金钻头,在坚硬破碎岩石中伴用,既有利于破岩,又有比金刚石钻头寿命高的适应性,大大降低了钻头成本。
3、因钻具转速低,钻具对孔壁的碰撞机会较少,而且这咱钻进方法是以高频对孔底冲击,养活了对岩石或倾斜地层产生孔斜的影响,从而可提高钻孔的垂直度,同时,也可减少孔壁岩石坍塌。
4、比起回转钻进,潜孔锤钻进所需的钻压和扭矩要小得多。这样可减轻钻机的设备的质量和能力,为大口径硬岩钻进,边坡坑滑加固锚杆孔钻进创造了有利有使用条件。
5、风动潜孔锤钻进采用的无循环干式作业,空气既作为动力又作为排渣介质,不污染环境。
6、风动潜孔锤工作时单次冲击功在瞬间即可生产极大作用力,因而它可应用于软层冲击挤密不排土钻进,也可用于非开挖铺管的夯管技术。
随着潜孔锤结构形式的发展,工作性能的优化,钻研进工艺的完善以及应用时所显示出的优点,使人们越来越认识到潜孔锤钻进在变东地层、矿产勘探及工程地质勘探、锚因工程、灌浆孔、大坝倒垂孔中应用具有良好前景。
一、研究现状:
自1871年美国研究制造了长一台的蒸汽功力凿岩机以来,不远之后便将注意力转到空气作为动力的研究上,并于1902年由美国英格索兰公司推出了第一台便式移动空气压缩机,从而导致了气功凿岩机的全面发展。空气潜孔锤钻进技术是上世纪初开始试验以及50~60年代获生产发明,并于20~80年代广为发展形成的,空气钻进技术被视为钻探技术的樗性之了动潜孔锤钻进技术以及钻进效率高、钻头寿命长、钻孔质量好的特点,国内外研究者对潜孔锤结构不断改进,工作性能优化,钻研匹配,钻头类型,工艺方法等方面竟相进行研究,使其适应多种工程应用的要求。
(一) 国外的研究现状
1、美国是空气潜孔应用较早的国家之一,它从最早的风动凿岩开始,不断进行空气压缩的改进和研究,不断完善和发展风潜孔锤的结构的设计,以及进行潜孔机械的配套,空气不仅作为碎岩动力,排渣及冷却钻头,而且也为钻机提供行走、回转等动力,使其工艺配套更趋完善和合理,其经济效益更加突出。风动潜孔锤的产品越来越多样化和系列化,应用领域越来越广泛。最近几年来,其在大口径工程钻浆施工及潜孔定向钻进以及时性进行非开挖地下管线铺设中取得了较大的发展。
2、西德有前公司,为了有效地提高卵砾石中和坚硬岩石的钻进效益,近年来也将潜孔锤钻研进技术较广泛地应用于矿山爆破孔、水井、工程和岩石钻浆中,并取得了较好的效果,特别是潜孔锤取心钻研进技术及汽举反循环工艺得到了较大的发展。
(二) 国内研究现状
我国幅员辽阔,地形地貌气候复杂多变,有大面积的沙漠戈壁,大面积黄土覆盖区,大面积高寒缺水或供水困难地区,大面积岩溶地区,并存在冰冻层带,当然还有大量忌用液体循环介质的各种客观条件等宜于发展采用多工艺空气钻进技术,以保证钻探质量,提高钻探速度和降低成本。我国地质部门曾于1937~1958年在北京和甘肃锡铁山进行过早期空气钻进试验。60~70年代乃至“六五”期间不少单位陆续进行研究试验生产应用,虽未能形成较大规模的生产能力,但对发展此技术的认识都是肯定的,地质生产部“七五”科技及攻关项目之一“多工艺空气潜孔锤钻进技术的开发研究”,经过五年攻关活动,项目所设七项课题和分解进行的此项专题,均取得了丰硕成果,包括如下几下方面:
1、空气潜孔锤钻进器具和工艺
除了创造条件,大面积拓广应用常规潜孔锤钻进处,开发了反循环“GQ200”型贯通式潜孔锤和配套的“FQ200/250”球齿钻头,“QG273/210型”跟管钻进钻具,“QXD-165”和“QXS-165”型潜孔锤取的钻具,Q150/230、Q230/260、Q260/300mm潜孔扩孔钻头,以及井口密封捕尘装置,并研究总结了一套空气潜孔锤钻进工艺,此项成果对提高我国水文井钻探技术与生产水平效果显著,后来又延伸研制成功孔径95、93mm和800~1500mm贯通式潜孔锤。
2、设备研制成功空气反循环钻进用“WP”系列双壁钻具(Ф114、Ф89、Ф73)三牙轮钻头,双通道水龙头,主动钻探及岩样接收装置等,并研究总结了一套空气反循环钻进工艺。
3、气举反循环边疆取样器具和工艺
设计研制成功SHB系列气举反循环钻进双壁钻杆(Ф114、Ф12、Ф140、Ф168mm),各型钻头、气液分离和岩样接收装置等,并研究总结了一套取样判层和钻进工艺。
4、空气钻进用泡沫剂和钻进工艺
共研制成功四种泡沫剂(ADF-1、CDT-182、CDT-183)和一种清泡剂(DX),其性能达到或超过国外同类产品水平。
5、多功能空气钻进用钻机和各类监测系统,为发展多工艺空气钻进技术装备创造了条件。
二、研究的主要内容
(一)根据潜孔锤的工作原理及发展动态,拓展其在复杂地层(地层松散、钻进困难、孔壁稳定性差)钻进时的跟管及拔管应用,同时提出对潜孔锤的改进措施。
(二)根据空气潜孔锤在复杂地层条件下的碎岩优势,研究其松散布地层及基岩地层中的取心钻进,进一步完善钻具配套,拓展其在复杂地层在进行工程地质勘察的应用。
(三)风动潜孔锤钻进行ODEX工艺,它不仅使用了潜孔锤造孔,同时解决了套管跟进问题,避免了钻孔坍塌和重复破碎,提高了钻进速度,本文拟探索,在成孔口径及钻进深度上有所突破,以满足还在水利、水电、工路、铁路、工业及民用等各类灾害及基础施工中的不取心钻进。
(四)空气潜孔锤挤密成孔。目前,我国土层锚杆及桩基孔施中常采用冲洗液正循环和长螺旋杆干式作业钻进方法。用正循环钻进法因受施工场地,冲洗液排放及污水处理等条件限制,一般很少采用。而长螺旋干式作业不仅消耗功率大,而且钻进效率低,成本高,因此一开展潜孔锤锥开钻头挤密成孔研究具有较为广泛的应用前景。
(五)非开挖地下管线施工中潜孔锤钻进,它是一种机构简单,使用广泛,费用低的非开挖铺管施工设备。

第一章 空气潜孔锤及其钻进参数
第一节 空气潜孔锤的基本结构和类型
空气潜孔锤是以压缩空气为功力的一种风动冲击工具。它所产生的冲击功和冲击频率可以直接传给钻头,然后再通过钻机和钻杆的回转驱动,形成对岩石的脉动破碎能力,同时利用冲击器排出的压缩空气,对钻头进行冷却和将破碎后的岩石颗粒排出体外,从而实现了孔底冲击回转钻进的目的。因此,冲击器的结构、性能是实现风动钻进的重点。
一、冲击器的类型
1、按冲击器的配气方式和结构特点,可以分为有阀和无阀两种类型
(1)有阀式冲击器,这类冲击器的特点,是由配气结构的阀片控制的。按排气方式可分为旁侧排气和中心排气两种。旁侧排气冲击器使用最早,因其汽缸内的气体由钻头两侧排出,故稍旁侧冲击器、中心排气冲击器是使汽缸内的气体经钻头的中心孔排出。这种冲击器的排粉效果好,钻头使用寿命长,钻进效率高,较旁侧冲击器更适用于潜孔钻进的条件和要求。目前,用于岩土钻掘的冲击器多为中心排气冲击器。
(2 )无阀冲击器,这种冲击器没有阀,控制活塞往复运动的配气系统是布置在汽缸壁上,当活塞运动时自动配气。由于这类冲击器不用阀片配气,所以称为无阀式冲击器。这类冲击器的工作压力比有阀式要低,在相同工作压力下产生的冲击功要大一些。
2、按冲击器的额定工作压力,可以分为低风压冲击器和中高风压冲击器。
(1)低风压冲击器,一般是指其额定工作压力在0.5~0.7Mpa,如宜化一英格索兰矿山工程机械有限公司生产的CIR系列,无锡探矿机械产生产的WC及DJ系列,嘉兴冶金机械厂生产的厂系列冲击器。
(2)中高风压冲击器,是指工作压力在0.7Mpa以上冲击器,如宜化-英格索兰矿山工程有限公司生产的DH和DHD高风压系列,无锡探矿机械产生的CJ2、GQ、CJ系列冲击器,嘉兴冶金机械厂生产的JW和JG系列冲击器。一般将工作压力在0.7~1.2Mpa的冲击器叫作中风压冲击器,工作压力在1.2Mpa以上的冲击器叫作高风压冲击器。
(3)按冲击的钻进口径可分为小口径冲击器和大口径冲击器,孔口径在200mm以下的冲击器为小口径冲击器,如CIR90、CIR110、CIR150、CIR170、J-80、J-80B、J100、J-100B、J150等系列冲击器,成孔口径大于200mm的冲击器叫做大口径冲击器如DH、DHD、CJZ、JW-200、J-200B、J-250、FGC-15等系列冲击器。
(4 )按潜孔锤锤的中心通孔形成分为普通潜孔锤和贯通式潜孔锤。如FGC-15O 为贯通式潜孔锤,其余为普通式潜孔锤。贯通式潜孔锤的研制成功,为进行大口径硬岩、砂卵石层钻进,以及进行反循环连续取样及绳索取的钻进技术的发展创造了条件,提高钻进效率的同时,降低了设备(压缩机风量及风量)配套要求,提高了钻进深度。
二、冲击器的结构及其工作原理
冲击器是一个能产生冲击作用的气功装置,其基本结构一般由配气机构,内外缸、活塞几部分组成。其基本结构见图一和图二。
三、空气潜孔锤的工作原理
通过不断改变进排气方向,就可实现活塞在气缸内的不断往复运动,从而也能不断反复冲击钻头,这就是气功冲击器工作的最简单原理和过程。造成控制反复改变进排压缩空气方向的机构叫配气机构,配气机构是冲击器的核心部分,当压缩空气进入前气室时推动活塞上行,当压缩空气进入后气室时推动活塞下行。活塞是冲击器的一个能量转换装置,它依靠活塞运动将压缩空气的能量转换为冲击的机械能,一般是以冲击动态表示,冲击功的大小决定于活塞的重量及运动速度。下面就以图二阐述冲击器的基本工作原理。
压缩空气经左侧进气缸进入内缸4和外缸3间的环槽,由内缸的径向进气孔进入前气室(图中位置),推动活塞5上行(回程),后气室内气体由于容积变小而排气,经活塞上端内孔与上接头1下部芯管之间环状间隙排到初套6的下环槽,此时前气室处于进气行程,后气室处于排气行程。当活塞中部环面接触内缸下端内孔后,既关闭了前气室的进气通道,前气室处于封闭状态,室内压缩气体开始膨胀作动,继续推动活塞上行,此为膨胀过程。当活塞上端内孔与芯管密封面接触而关闭排气环槽后,后气室内气体处于压缩状态,进入压缩行程。活塞继续上行,当底端面越过衬套上径向排气孔后,前气室开始排气,经衬套内孔直接排到下部环槽,此时前气室为排气行程。当活塞上环面越过内缸环槽后,压气开始进入后气室,后气室处于进气行程,活塞作减速运动,直至速度为零而停止运动,即完成了活塞的回程运动。活塞冲程时前后气室经历的过程相反,前气室依次经历排气行程,压缩行程和进气行程,后气室依次经历进气行程、膨胀行程和排气行程。经潜孔锤作功后的废气内衬套下环槽经外缸径向孔排至外缸与外套管之间的环状通道,再经上接头右侧排气孔及专门排气管排出外,压气在孔内形成完全的封闭循环。

第二节 空气潜孔锤钻进技术参数
空气潜孔锤钻进技术不同于普通的切削与研磨原理。它是将压缩机产生的压缩空气的能量通过空气潜孔锤这个能量转换装置,对需要破碎的岩石产生高频的冲击能量,当这个能量(冲击功)达到岩石的临界破碎功时,便产生体积破碎,同时工作后的气体在一定的风速条件下将岩石颗粒排出孔外以实现钻进的目的。潜孔钻钻进的操作技术虽然简单,但是没有科学和熟练的操作,不可能取得理想的钻进效果,有时还可能发生麻烦。因此,合理的选用钻进技术参数如钻压、风压、风量和转速是取得理想钻进效果的基本条件。
一、钻压
空气潜孔锤钻进的基本工作过程,是在静压力(钻压)、冲击力和回转力三种力作用下不碎岩的。其钻压的主要作用是为保证钻头齿能与岩石紧密接触,克服冲击器及钻具的反弹力,以便有效地传递来自冲击器的冲击功。钻压过小,难以克服冲击器的工作时的背压和反弹力,直接影响冲击功的有效传递,钻压过大,将会增大回转阻力和使钻头早期磨损。
对于潜孔锤全面钻进,一般认为单位直径的压力值在30~90kg/cm,而对于潜孔锤取心钻进,压力推荐值可查资料较少,据中国地质大学对空气潜孔锤取心钻进的压力推荐值,在软至中硬岩层为78~199N/㎝2,据成都水文队试验资料通过钻压计算,在软至中硬岩层一般多为2.94~4.9KN,即单位面积上的钻压为41~68N/㎝2。但笔者认为,钻压的合理选择应考虑到钻进方式(裸孔或偏心跟管、全面钻进或取心钻进),设备性能、钻具匹配(钻具钻量),以及所选用的冲击器的性能(如低风压还是中高压,因工作压力的不同而背压不同)进行综合考虑,既要达到最佳的钻进效果,还要最大限度地减少钻具及钻头的磨损。
二、转速
转速的高低主要和冲击器的冲击频率,规格大小以及钻岩的物理机械性质有关。一般转速选用每分钟20转左右为好,转速过高会造成钻头的严惩磨损和钻进效率的降低,由于气功潜孔锤进是以冲击碎岩的,回转速度为改变钻头合金的冲击破岩位置,避免重复破碎,因此,合理的转速应保证在最优的冲击间隔范围之内。
最优冲击间隔的确定,多采用两次冲击间隔的转角表示,转速与冲击频率和最优转角的关系式如下:
A=n 260/f (度)
式中: A ——— 最优转角(度)
n ------------ 钻具转速 (r / min)
f -------------冲击频率 (次/min)
美国水井学会(N·W·W·A)康伯尔认为在硬岩中两次冲击之间的最优转角为11°,因而主张钻机立轴转速在18~30r/min。而笔者在多年的施工过程中,通过对各种地层及潜孔锤钻进的不同钻进试验应用,认为钻速选择在20~50转/分是比较合理的,对于硬岩层选用低转速,对于软岩层选用较高转速。
三、空气压力
潜孔冲击器的冲击频率和冲击功都与空气压力有关,空气压力是决定冲击功的重要因素,因而也是影响机械钻速的主要参数,从国内外大量资料证料,机械钻速的提高和空气压力的提高是成正比关系。例如:空气压力从0.6Mpa提高至1.03Mpa时,钻进速度可提高一倍。
空气压力除满足潜孔锤工作压力外,还应克服管道压力损失,孔内压力降、潜孔锤压降外,尚须在有水情况下克服水柱压力,才能正常工作。
P=Q2+Pm+P锤+P水
式中:P --------空气压力 Mpa
Q2------每米干孔的压力降(一般为0.0015Mpa/m)
L--------钻杆柱长度(m)
Pm------管道压力损失(Pm=0.1~0.3Mpa)
P锤-----潜孔锤压力降 Mpa
P水------钻孔内水柱压力
从上式可以看出在无水条件下,钻时深度增加,空压压力越大,钻进深度越大。
四、空气量
空气钻进中空气清耗量是根据气动潜孔冲击器的性能参数(耗气量)及为清除孔内岩屑的最低上返速度而确定。
根据文献资料推荐,为保持清除和携带孔底岩屑的钻孔环隙,上返速度,取心钻进成,上返速度V=10~15m/s,全面钻进时V=20~25m/s,为满足上述要求对空气量的计算,一般采用下式:
Q=47.1k1k2(D2-d2)V
式中:Q--------钻进时所需空气量m3/min
K1------孔深损耗系数,孔深100~200m以内取1.0~1.1
K2------孔内涌水时,风量增加系数,其值与涌水量有关,中等和入涌水量成K2=1.5
D-------钻孔直径(m)
d--------钻杆外径
V--------环状间隙气流上返速度
总之,钻进技术参数的选择应考虑到岩石的机械特性,冲击器的性能,钻孔深度,孔内水柱压力,钻孔口径等诸多因素,在取得最佳的钻速同时,避免更多的动力及成本消耗。

第二章 空气潜孔锤在跟拔导管中的应用
上一章就空气潜孔的类型、工作原理及钻进技术参数已有综述,我们知道空气潜孔潜是实现空气钻进的核心部分,而冲击器的核心是活塞这个能量转换装置,由它产生高频的振动及冲击作用直接传递给钻头而实现钻进目的。因此,就如何根据潜孔锤的结构特点及工作原理来改变力的传递方向,以实现其在复杂地层中钻进分步跟管护孔,及拔出导管是本章的研究重点。在常规钻操作工作中,跟管与拔管都是靠吊钟来实现,但其劳动强度大,工作效率低,特别是在水平孔钻中孔施工中会增加大量的人力消耗,而却效率极低,甚至无法进行工作,达不到设计目的。1993年~1994年,笔者曾在成都市顺城街地下通道管棚施工及三角处交流中心深基坑支护成孔,锚杆施工中遭遇此困难,因地层皆为第四系列卵石层且地下水皆已疏干,护孔极为困难,虽当时已有偏心跟管工艺应用,但因该工艺在生产中的应用还不十分成熟,且钻进浓度远达不到当时浓度米的要求,给施工带来较大困难,为此,笔者在通过如何就就根据冲击器的结构特点及工作原理进行认真分析后,成功实现了空气潜孔锤在跟拔管施中的应用,解决了施工难题,并为单位创造了较好的社会及经济效益,为在复杂地层中进行水平孔钻进提供了有利的技术支撑,使空气潜孔钻进工艺在非开挖铺设管线,隧道管棚施工,边坡锚杆及锚索施工以及钻探埋卡钻的事故处理上得到了更为广泛的应用,拓展了空气潜孔锤的应用领域。

第一节 空气潜孔锤在跟管中的应用
笔者于1993年首次在成都市顺城城街过街通道管棚施工中应用,解决了在水平施工中跟拔管困难以来,后多次在进行非开挖铺设管线,深基坑锚固支护,边坡锚索,锚杆施工中得到进一步应用,并使之与偏心跟管潜孔锤钻进工艺相结合,使该方法得到了更为广泛的应用。
一、空气潜孔锤的跟管原理
空气潜孔锤跟管的基本原理是将冲击器活塞产生的高频振动及冲击力直接作用到导管上,将导管跟入孔内,其具体过程如下:
空气压缩机产生的压缩空气进入冲击器,使活塞在气缸内产生往复运动从而对打杆产生高频的振动冲击作用,打杆再将冲击频率及冲击力传递到导管,使导致管在高频振动及冲击作用下跟入地层而达到护孔的目的。
二、跟管实现机具
1、下缸接头,原冲击器下缸接头是实现传递回转和扭短作用的,而跟管是在不回转下进行的,因此,需对下缸接头进行改进。
2、打杆:打杆及作用相当于钻头,冲击器活塞直接其上,其与岩心管接头连接,接头又与导管相接,因此打杆直接将冲击功传递至导管。
3、岩心管接头:岩心管接头其作用是将打杆及套管连接在一起,同时为了让冲击器工作后的气体排出,通常在接头上钻口径Ф16mm的排气孔,以降低导管内的气体背压。

第二节  潜孔锤在拔管中的应用
在复杂比层中进行垂直或水平孔施工中往往进行跟管钻进,当钻进完毕或发生孔内事故,经常遇到起拔导管的问题。常规方法为使用吊锤和千斤顶进行强力起拔,但往往失败和将导管拔断,后采用潜孔锤法,利用其高频振动进行松动和解卡,再施以一定的起拔索引力,可将导管轻松拔出。
一、拔管原理
将冲击器下缸接头重新进行改进加工成一打垫,冲击器活塞直接作用于打垫上,打垫将冲击作用传递给外缸,再通过外缸与冲击器上接头及导管的连接传递至导管上,导管在高频的冲击及振动作用下拔出孔外,冲击器工作后的气体从打垫的中心孔排出。
二、主要实现器具
1、打垫:其作用相当于钻头,直接承接冲击作用。
2、连接三通:其作用为连接冲击器与导管,同时将气送入冲击器。
冲击器跟管拔管技术,本人曾多次在20~30米的孔内应用,几乎全都应用成功,如在施工中确有困难时,可加大冲击中的性能,施加较大的牵引力。但值得注意的是冲击器工作时的高频振动,易破坏丝扣,因此在工作过程中应随时将已松动的丝扣旋紧,另外在拔管时,外缸受力后容易产生断裂,可向厂家提出改善材质及增大厚度的要求来解决此问题。

第三章  空气潜孔锤在取芯钻进中的应用
空气钻进以其能大幅度钻进效率,保证工程质量,降低施工成本,具有显著的技术经济效益而被视为现代钻探技术与衡量钻探技术水平的标志之一,受到国内外钻探行业的重视。国外经过半个世纪的发展,进入70~80年代,空气钻进技术日益完善,形成了以含气低密度介质,多种循环方式、多种碎岩方法的多工艺空气钻进技术,广泛应用于石油、煤油、固体矿产、水文水井、工程地质勘察,工程施工等领域,获得了较好的经济效益和社会效益。
作为多工艺空气钻进技术配套重要内容的空气冲击回转(潜孔锤)取芯钻进技术的试验研究,其主要意义在于适应坚硬及复杂地层、干旱缺水、供水困难、以及忌用液体循环介质的水文地质、工程地质、灾害地质勘探,固体矿产勘查,为获得地层的实物岩心资料,满足地质质量及工程技术要求,提高钻进效率,而充分利用空气钻进的主要技术装置和器具,配置适应的取心钻头及钻具即可有效工作。
一、国内外对空气潜孔锤取心钻进技术的研究现状
值得指出的是,在应用空气潜孔锤不取心钻进大幅度提高钻进效率的同时,为满足部分孔段岩心采取要求的取心式冲击回转已经提出。多年来,通过不同途径的试验研究获得了较大的进展,坚硬岩石及复杂地层取心钻进取得成功,贯通式潜孔锤连续取四样及绳索取心技术得到了长足发展。取心技术在各种领域得到了飞速发展。
二、国外基本情况
1、原苏联出版的“岩心钻探学”,关于空气潜孔锤取心钻进的钻具结构,由气动冲击器+岩心管+气动冲击钻组成,在IX-X级岩石中钻进,机械钻速达成2.5~2m/h,岩心采取率为75~80%。
2、西德空气潜孔锤主要应用于第四系卵石层和浅孔中,并且应用潜孔锤取心钻进已取钻进展,其钻头型式为原壁园筒,底唇面镶嵌球齿或片齿合金。
3、美国刚开展了取心钻进技术在石油、矿山等其它领域的潜孔锤取心应用研究,其工艺也由单位的正循环发展到反循环低密度循环介质领域,在空气钻进深度上有着更大的发展。(

[上一个新闻资讯]:浅谈挖掘机空调系统的设计...
阅读技巧:键盘方向键 ←左 右→ 翻页
[下一个新闻资讯]:浅谈虚拟检测--虚拟检测...
Copyright @ 沈阳废品回收    电子邮件:
沈阳荣汇物资回收有限公司   电话:13252826888