精密和超精密磨削

http://www.huishouceo.com 2015年09月19日        

1.精密和起精密摩削

在工具和模具制造中,磨削是保证产品的精度和质量的最后一道工序。技术关键除磨床本身外,磨削工艺也起决定性作用。在磨削脆性材料时,由于材料本身的物理特性,切屑形成多为脆性断裂,磨削后的表面比较粗糙。在某些应用场合如光学元件,这样的粗糙表面必须进行抛光,它虽能改善工件的表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。为了解决这一矛盾,在80年代末日本和欧美的众多公司和研究机构相继推出了两种新的磨削工艺:塑性磨削(Ductile Grinding)和镜面磨削(Mirror Grinding)。
(1)塑性磨削 它主要是针对脆性材料而言,其命名来源出自该种工艺的切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切的形式被磨粒从基体上切除下来、所以这种磨削方式有时也被称为剪切磨削(Shers Mode Grinding)。由此磨削后的表面没有微裂纹形成,也没有脆性剥落时的无规则的凹凸不平,表面呈有规则的纹理。
塑性磨削的机理至今仍不十分清楚,在切清形成由脆断向塑性剪切转变的理论上存在各种看法。大多数研究者认为,当磨粒的切削深度小到一定程度时,切屑就由脆断转变为塑断,这一切削深度被称为临界切削深度,它与工件材料特性和磨粒的几何形状有关。一般来说,临界切削深度在100μm以下,因而这种磨削方法也被称为纳米磨削(Nanogriding)。根据这一理论。有些人提出了一种观点,即塑件磨削要特殊磨床来实现。这种特殊磨床必须满足如下要求;
l)极高的定位精度和运动精度。以免因磨粒的切削深度超过100μm时,导致转变为脆性磨削。
2)极高的刚性。因为塑性磨削的切削力远超过脆件磨削的水平,机床刚性太低,会出切削力引起的变形而破坏塑性切屑形成的条件。
对形成塑性磨削的另一种观点认为切削深度不是唯一的因素,只有磨削温度才是切屑由脆性向塑性转变的关键。从理论上讲,当磨粒与工件的接触点的温度高到一定程度时,工件材料的局部物理特性会发生变化,导致了切屑形成机理的变化。作者从实践中找到了支持这种观点的许多证据:比如在一台已经服役20多年的精度和刚度水高的平面磨床上磨削SiC陶瓷,用4000#的金刚石砂轮,工件表面粗糙度小于Rq5μm表面上看不到脆断的痕迹。另外德国亚琛工业大学的K0nig教授作了如下试验.在普通的车床厂,用激光局部加热一个SiN 陶瓷试件,即能顺利地进行切削。这些实验均间接地说明温度对切屑形成机理有决定性的影响。
(2)镜面磨削 顾名思义,它关心的不是切屑形成的机理而是磨削后的工件表面的特性,当磨削后的工件表面反射光的能力达到一定程度时,该磨削过程被称为镜面磨削。镜面磨削的工件材料不局限于脆性材料,它也包括金属材料如钢、铝和钼等。为了能实现镜面磨削,本东京大学理化研究所的Nakagawa和Omori教授发明了电解在线修整磨削法ELID(Electrolytic In-Process Dressing)。
镜面磨削的基本出发点是:要达到镜面,必须使用尽可能小的磨粒粒度,比如说粒度2μm乃至0.2μm。在ELID发明之前,微粒度砂轮在工业上应用很少,原因是微粒度砂轮极易堵塞,砂轮必须经常进行修整,修整砂轮的辅助时间往往超过了磨削的工作时间。ELID首次解决厂使用微粒度砂轮时,修整与磨削在时间上的矛盾,从而为微粒度砂轮的工业应用创造条件。
ELID磨削的关键是用与常规不同的砂轮,它的结合剂通常为青铜或铸铁。图12是ELID在平面磨床上应用的原理及实验装置。在使用ELID磨削时,冷却润滑液为一种特殊的电解液。当电极与砂轮之间接上某一电压时,砂轮的结合剂发生氧化。在切削力作用下,氧化层脱落从而露出了锋利的磨粒(图13)。由于电解修整过程在磨削时连续进行,所以能保证砂轮在整个磨削过程中保持同一锋利状态。这样既可保证工件表面质量的一致,又可节约以往修整砂轮时所需的辅助时间,满足了生产率要求。

ELID在平面磨床上的应用原理及实验装置
a) ELID磨削原理 b)砂轮与修整器外观
ELID磨削方法除适用于金刚石砂轮外,也适用于氮化硼砂轮,应用范围几乎可以覆盖所有的工件材料。它最适合于加工平面,磨削后的工件表面粗糙度可达到Rq1nm的水平,即使在可见光范围内,这样的表面确实可以作为镜面来使用。ELID磨削的生产率远远超过常规的抛光加工,故在许多应用场合取代了抛光工序。最典型的例子就是加工各种泵的陶瓷密封圈,传统的工艺是先磨再抛光,采用ELID磨削,只需一道工序,既节约时间又节省投资。
ELID也被用于加工其他几何形状如球面、柱面和环面等。按镜面的不同要求,可用于部分取代抛光或把抛光的时间降到最低的水平。
ELID磨削虽有上述优点,但在某些应用场合也有一些缺点。比如在磨削玻璃时,如果采用较大的粒度(2μm),由于砂轮的磨粒连续更替,部分磨粒不断脱离结合剂而成为自由磨粒,这些磨粒在工件与砂轮间作无规则的滚动,个别磨粒会在工件表面上造成局部的无规则的刻痕,其深度有时能超过磨粒的半径倍。图14是一个EIJD磨削过的工件表面,若不考虑局部的刻痕,其表面粗糙度已达Rq5nm的水平,但由于这样的刻痕,使工件的抛光量要增加到3~5μm,镜面磨削的应用价值在这种情况下被相应地减弱。
由此可见,是否要采用镜面磨削,关键在于应用场合。假如个别刻痕不影响工件的使用,镜面磨削可以取代研磨和抛光,并提高生产效率。否则必须综合考虑所有的加工过程以确定最佳的加工工序的组合。




[上一个新闻资讯]:精密机床轴承市场分析与预...
阅读技巧:键盘方向键 ←左 右→ 翻页
[下一个新闻资讯]:精密体积成形模具的设计制...
Copyright @ 沈阳废品回收    电子邮件:
沈阳荣汇物资回收有限公司   电话:13252826888